Development of Probabilistic Stress Life Curves and Probabilistic Miner’s Damage Distribution Using Fatigue Testing Results

Juan D. Ocampo and Harry Millwater

University of Texas at San Antonio

Aircraft Airworthiness and Sustainability Conference Student Competition

May 10-13 2010
OUTLINE

- Motivation and Objective
- Testing Data
- Probabilistic Stress Life (PSN)
- Stress Severity Factor (SSF)
- Random Damage Index (D)
- Discussion & Conclusions
- Current Work
Miner’s rule dictates that failure occurs when the damage index \((D)\) exceeds one. However, numerous comparisons with test results show that failure occurs for a range of damage index values, and the results are case and material dependent.
Objectives

1. Develop PSN curves that represents the testing variation.
2. Develop β and θ from the testing data to be used in Jarfall’s Stress Severity Factor (SSF) method.
3. Determine probabilistic Miner’s damage distribution.

The probabilistic results will be used within a probabilistic simulation of fatigue failure of a general aviation structure.
Work Summary

Find the best Probabilistic SN Regression Fit

Develop Probabilistic SSF data

CA Testing

Testing

VA Testing

Damage Distributions

β, θ, SSF

Max. Stress
Probabilistic SN

Available Data

<table>
<thead>
<tr>
<th>Coupon Configuration</th>
<th>Maximum Stress [KSI]</th>
<th>Number of Data Points</th>
<th>Mean Stress [KSI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open Hole</td>
<td>42, 32, 18, 12, 10, and 9.25</td>
<td>41</td>
<td>3</td>
</tr>
<tr>
<td>Open Hole</td>
<td>42, 32, 20, 18, 12.5, and 11.5</td>
<td>46</td>
<td>6</td>
</tr>
<tr>
<td>Hilok Filled Hole</td>
<td>42, 32, 24, 18, and 14</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Hilok Filled Hole</td>
<td>42, 32, 30, 24, 21 and 16</td>
<td>37</td>
<td>6</td>
</tr>
<tr>
<td>Hilok 50 % Load Transfer</td>
<td>42, 32, 24, 15, and 8</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>Hilok 50 % Load Transfer</td>
<td>42, 32, 24, 15, and 11</td>
<td>45</td>
<td>6</td>
</tr>
</tbody>
</table>

Testing conducted by Wichita State University

This practice pertains only to S-N relationships that may be reasonable approximated by a straight line in log-log space. Do not use runouts for fitting

$$\log N = A + B(\log S)$$

$$B = \frac{\sum_{i=1}^{k} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{k} (X_i - \bar{X})^2} \quad \hat{A} = \bar{Y} + \hat{B}\bar{X}$$

$$\bar{Y} = \hat{A} + \hat{B}\bar{X} \pm \sqrt{2F_p \sigma} \left[\frac{1}{k} + \frac{(X - \bar{X})}{\sum_{i=1}^{k} (X_i - \bar{X})^2} \right]^{1/2}$$

$$\sigma^2 = \frac{\sum_{i=1}^{k} (Y_i - \bar{Y}_i)^2}{k - 2}$$
Probabilistic SN
Results Open Hole 3 KSI Mean Stress

--- 95% CB
Probabilistic SN
Hilok 50 Load Transfer 6 KSI Mean Stress

--- 95% CB
Probabilistic SN
Hilok 30 Load Transfer 6 KSI Mean Stress

--- 95% CB

--- 95% CB
Stress Severity Factor

Fatigue quality number based on the structural configuration

Hole Quality Factor, counts for the effect of the hole finishing.

\[SSF = \alpha \beta \left(K_{tb} \times \Theta \times LT \times \frac{w}{d} + K_{tg} (1 - LT) \right) \]
The SSF concept can be extended for any discontinuity in the structure (Any discontinuity can be appraised by the SSF)
SSF
How to develop β

Because the LT = 0

$$\frac{\sigma(N_f)_{OH}}{\sigma(N_f)_{FH}} = \frac{SSF_{FH}}{SSF_{OH}}$$

Solve for β_{FH}

$\beta_{OH} = 1$
SSF
How to develop θ

1. Hilok \textit{Load transfer}
2. Open Hole

\[
\frac{\sigma(N_f)_{OH}}{\sigma(N_f)_{FH}} = \frac{SSF_{FH}}{SSF_{OH}}
\]

\[
\frac{\sigma(N_f)_{OH}}{\sigma(N_f)_{FH}} = \alpha_{FH} \cdot \beta_{FH} \left\{ K_{tb} \cdot \theta \cdot LT \cdot \frac{w}{d} + K_{tb} (1 - LT) \right\} \quad \alpha_{OH} \cdot \beta_{OH} \cdot K_{tg}
\]

Solve for θ
SSFβ and θ Results
Hilok 3 KSI Mean Stress (50 Load Transfer)
SSF = \alpha \beta \left(K_{tb} \times \theta \times LT \times \frac{w}{d} + K_{tg} \left(1 - LT\right) \right)

95% CB

SSF

Hilok 3 KSI Mean Stress (50 Load Transfer)
Suppose we have the SN data for OH (SSF = 3) and we want to calculate the life for a structural configuration with SSF = 2.6

\[
\text{SSF Ratio} = \frac{SSFOH}{\text{Any SSF}} = \frac{3}{2.6} = 1.15
\]

\[
S_{\text{max}} \text{ Any SSF} = (\text{SSF Ratio}) \cdot S_{\text{max}} \text{ SSF OH}
\]

We can predict easily the life for any structural configuration knowing OH data and the SSF.
How to Use SSF to Predict Life

\[
\frac{S_{\text{max}}}{S_{\text{max}} @ \text{SSF} = 3} = \frac{3}{\text{Any SSF}}
\]

SSF Ratio

Stress [KSI] vs. Flight to Failure
Random Damage
Index Methodology

Usage Type
- Normal
- Aerobatic

Structural Details
- Fastener Type
- % Load Transfer (3 levels)
- 1g stress (3 levels)

Load Limit Factors
Flight Length and Velocity
Ground stress

Exceedance Curve
Sink Rate

Aerobatic - High 1g Stress - All Stages
Random Damage Index Methodology

Miner’s Rule

\[d_{\text{current}} = d_{\text{previous}} + \frac{1}{N_{f_j}} \]

Yes Next Cycle

No, Store Damage Index

Fastener Type: A/B
% Load Transfer: x/y/z
1g stress (ksi) = i/j/k

Failure Damage Index D

Repeat N test M Simulations
Random Damage Index Results

<table>
<thead>
<tr>
<th>Spectrum</th>
<th>Severity</th>
<th>Configuration</th>
<th>Mean Damage Index</th>
<th>Coefficient of Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>High (9 KSI)</td>
<td>Open Hole</td>
<td>0.7248</td>
<td>0.113</td>
</tr>
<tr>
<td>Normal</td>
<td>Medium (7 KSI)</td>
<td>Open Hole</td>
<td>0.8774</td>
<td>0.190</td>
</tr>
<tr>
<td>Normal</td>
<td>Low (5 KSI)</td>
<td>Open Hole</td>
<td>0.7281</td>
<td>0.228</td>
</tr>
<tr>
<td>Normal</td>
<td>High (9 KSI)</td>
<td>50% Load Transfer</td>
<td>5.7379</td>
<td>0.483</td>
</tr>
<tr>
<td>Normal</td>
<td>Medium (7 KSI)</td>
<td>50% Load Transfer</td>
<td>2.2056</td>
<td>0.437</td>
</tr>
<tr>
<td>Normal</td>
<td>Low (5 KSI)</td>
<td>50% Load Transfer</td>
<td>Coupon did not fail during testing</td>
<td></td>
</tr>
<tr>
<td>Aerobatic</td>
<td>High (6 KSI)</td>
<td>Open Hole</td>
<td>0.8942</td>
<td>0.101</td>
</tr>
<tr>
<td>Aerobatic</td>
<td>Medium (4.5 KSI)</td>
<td>Open Hole</td>
<td>0.9151</td>
<td>0.131</td>
</tr>
<tr>
<td>Aerobatic</td>
<td>Low (3 KSI)</td>
<td>Open Hole</td>
<td>0.7495</td>
<td>0.135</td>
</tr>
<tr>
<td>Aerobatic</td>
<td>High (6 KSI)</td>
<td>50% Load Transfer</td>
<td>2.4138</td>
<td>0.225</td>
</tr>
<tr>
<td>Aerobatic</td>
<td>Medium (4.5 KSI)</td>
<td>50% Load Transfer</td>
<td>4.3957</td>
<td>0.468</td>
</tr>
<tr>
<td>Aerobatic</td>
<td>Low (3 KSI)</td>
<td>50% Load Transfer</td>
<td>Coupon did not fail during testing</td>
<td></td>
</tr>
</tbody>
</table>
Random Damage Index Results

Normal Usage, High Severity, and Open Hole

Weibull 3 Parameter
Random Damage Index Results

Acrobatic Usage, High Severity, and Open Hole

Weibull 3 Parameter
Random Damage Index Results

Normal Usage, Low Severity, and Open Hole

Weibull 3 Parameter
Random Damage Index Results

Acrobatic Usage, Low Severity, and Open Hole

Weibull 3 Parameter
Random Damage Index Results

Normal Usage, High Severity, and Hilok 50%

Weibull 3 Parameter
Random Damage Index Results

Acrobatic Usage, High Severity, and Hilok 50%

Weibull 3 Parameter
Probalistic methodology and computer code were developed so that a probabilistic damage index can be calculated.

Results confirm that failure does not always occur when Miner’s coefficients reaches a value equal to one.

The results for D were best represented by a Weibull distribution.
Conclusions & Discussion

- The mean values ranged from approximately 0.72 for low severity Normal usage open hole coupon to 5.73 for high severity normal usage 50% load transfer coupon, and from 0.74 for low severity Acrobatic open hole coupon to 4.39 for high severity acrobatic usage 50% load transfer.
Current Work

- Methodology implementation in SMART (SMall Aircraft Risk Technology) software to do risk assessment of general aviation.
- Implement Polynomial regression for the tested data.
Acknowledgements

The authors are grateful to the Federal Aviation Administration (FAA) for grant 07-G-011 which supports this research project.
Questions?
juan.ocampo@utsa.edu

Thanks!